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Rapid granular flow is diffusive in character. This diffusive nature is important 
inthe generation of constitutive properties such as effective shear and bulk 
viscosities, effective conductivity of particle fluctuation energy, and self-diffusion 
coefficients. Experiments were performed in a large air-table apparatus that can 
sustain up to a few thousand small, light disks just above a horizontal porous 
plane. Experiments on 2D diffusion processes were performed using this 
apparatus. Measurements of self-diffusion coefficients and granular temperature 
in systems having different areal concentrations are in good agreement with 
predictions based on the kinetic theory and on numerical simulations. 

KEY WORDS: Diffusion process; kinetic theory; image analysis; packing 
fraction. 

1. I N T R O D U C T I O N  

Diffusion has a strong effect on important  processes in rapid granular  flow 
in like-particle mixing and size and density segregation. Nevertheless, 
relatively few studies have focused on the prediction of diffusion coefficients 
in flow of dense granular  systems. In  the present paper, we present both 
experimental (using an air table) and numerical  determinations of the self- 
diffusion coefficient for disklike particles and compare the results with 
predictions based on the kinetic theory. First, we describe a two-dimen- 
sional (2D) experiment designed to study the granular  temperature and 
show how to determine the diffusion coefficient with new image-processing 
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techniques. Second, we develop the kinetic theory for uniform-sized disks 
and show that our experimental results can be understood in terms of a 
balance between the dissipation of inelastic, rough disks and the energy 
input from the random turbulent fluctuations from the air table. Third, we 
describe the results of computer simulations based on a hard-disk model 
and show how to calculate velocity autocorrelation functions to determine 
diffusion coefficients. Finally, we compare the results of experiments, kinetic- 
theory calculations, and computer simulations. 

2. EXPERIMENTAL APPARATUS AND I N S T R U M E N T A T I O N  

We have designed and constructed a large air table in order to study 
the statistics of some two-dimensional systems, t~) A vertical wind tunnel 
provides a homogeneous air flux through a horizontal porous plate. Air 
passing through the pores supports small disks which constitute a more-or- 
less-dense, 2D particle system. The porous surface comprises a horizontal 
porous plate made of sintered bronze, 0.5 cm thick and 50 cm by 50 cm. 
The disks are styrene (density 1.18g/cm3), 1 mm thickness and 8mm 
diameter. A truncated Plexiglas pyramid-shaped hood of base 50 x 50 c m  2 

and height 48 cm suspended 3 cm above the air table prevents the initial 
loss of pressure close to the boundaries of the table and thus allows 
uniform performance. 

The disks are experience what we might call 'hard-core interactions' 
(no overlapping or deformation between them) and eventually weak hydro- 
dynamic interactions. (2) Heterogeneities in air pressure and velocity at a 
small spatial scale are unavoidable because of the porous plate (pore size 
is around 40 prn): these heterogeneities and the lack of parallelism between 
the disks and the sintered plate cause chaotic motion of the suspended 
disks. 

2.1. Granular Temperature Measurements 

The system is dissipative because the blowing apparatus is a reservoir 
that ensures a steady state (not an equilibrium one) in which the energy 
lost in collisions is balanced by the energy gained by the system by inter- 
acting with the air flow. Experiments suggest that the disks are never per- 
fectly horizontal after a collision. These deviations from the horizontal may 
be caused by geometrical defects of the disks or because collisions are never 
frontal. After collisions, particles are subject to forces resulting from the 
presence of air under them. Acceleration appears to be uniform (Fig. 1). 
In the short term, all the particles accelerated in approximately the same 
manner. As time t after the collision increases, the probability that a first 
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Fig. I. Increase of velocity versus time for different packing fractions of disklikc particles on 

thc air table. V is the instantaneous velocity calculated between two consecutive time steps, 
V o is the initial velocity obtained just after thc collision, v = 0.007 for the square, and v = 0.08 

f o r  t h e  c i r c l e .  

particle moves freely without experiencing a new collision decreases 
proportionally as the packing fraction (areal fraction occupied by the disk 
on the plate) increases. The mean free path is inversely proportional to the 
density number of particles and hence the packing fraction. Thus only the 
slow-moving particles have long enough intervals between collisions to be 
included in average calculations. This is why the discontinuity in the varia- 
tion of V - V 0  versus time appears at t = 0.8 see for a packing fraction 
v = 0.08 and at t = 1.2 sec for a packing fraction v = 0.007. 

During a given time step, the measurement of the local displacements 
can be used to generate a velocity distribution function. This distribution 
approximates a Maxwellian and thus permits the calculation of the tem- 
perature. In the case of gas this would be given by 

r=2  2k ( V 2 )  (I)  

where k is Boltzmann's constant and m is the mass of the grain. In the case 
of granular media TM the definition of granular temperature omits k/m, and 
the granular temperature Tg becomes proportional to the mean square of 
the velocity fluctuations~3): 

T~= �89 V 2) (2) 
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To better understand the granular temperature, we have performed 
three kinds of measurements: 

(a) First for one given air flow, we have varied the number of par- 
ticles on the table in order to vary the packing fraction from 0.05 to 0.22. 

(b) Air flow was changed to a higher value while packing fraction 
was varied over the same range as in (a). 

(c) For the same air flow as in (a), and for a fixed packing fraction 
of 0.025, particle diameter was varied. 

2.1.1. Measurements at Standard Air Flux. The air flow pas- 
sing through the porous plate comes from two electric fans with adjustable 
electric voltage inputs, t~ The major part of our granular temperature 
experiments were performed with a standard air flux which corresponds to 
an electric voltage of 150 V. For a chosen packing fraction, we placed a 
given amount of disks on the table and began the experiment. All the 
particle displacements were recorded with a video camera. By looking at a 
series of consecutive video images (each separated by 1/25 sec), we can 
easily calculate the velocity of each disk corresponding to a given time step. 
For each time step, all the local velocities are measured and recorded 
except the velocity of particles which are involved in collisions (between 
two particles or with the boundaries of the table). For the low packing 
fraction, several independent velocity measurements are performed to 
obtain a good statistical averaging (Fig. 2). Table I summarizes results 
obtained for different values of packing fraction up to 0.22, the largest 
packing fraction for which it is still possible to measure the velocity dis- 
tribution function without eliminating too many of the velocity values 

Table I. Granular Temperature T~ and the 
Packing Fraction v of Particles for Air-Table 
Experiments with Air Flow Passing Through 

the Porous Plate of the Table 

Granular temperature Tg 

v Normal air flow Increased air flow 

0.0056 19.43 19.43 
0.01 17.81 20.65 
0.025 13.15 19.3 
0.056 11.71 13.3 
0.11 7.56 11.80 
0.16 6.72 - -  
0.22 6.41 8.73 
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Table |1. Normalized Granular 
Temperature Showing Relatively 

Small Temperature Variations 

a (cm) Temperature Tg Tg/area 

0.6 5.27 18.64 
0.8 13.19 26.25 
1.0 18.41 23.45 
2.0 118.82 37.82 

(because of the number of collisions which occur during a given time 
step). Temperature varies logarithmically with the packing fraction v 
(R2~ 0.99) (Fig. 3). An extrapolation of this curve for the packing fractions 
ranging from 0.25 to 0.77 is used for the next measurements discussed in 
Section 2.2. 

2.1.2. Measurements at Higher Air Flux. We have repeated 
the experiments with increased air flux. This flux increases the height of the 
particles above the air table (~'4~ so that their mean velocities Vo increase 
(Table I). As in the previous case, the temperature is found to vary 
logarithmically with the packing fraction with a new factor which depends 
on air pressure. 

2.1.3. Measurements for Di f ferent  Disk Sizes. The preceding 
section shows that granular temperature is dependent on the height of the 
particle above the porous plate. We wish to obtain a mass-weighted 
granular temperature as in Eq. (1). Because disks of differing size have the 
same thickness and mass density, disk weight is proportional to disk area. 
A normalized granular temperature (Tg divided by area) for four disk sizes 
(0.6, 0.8, 1.0, and 2.0 cm) is seen to be approximately constant as shown in 
Table II. 

To summarize, granular temperature varies with packing fraction up to 
v = 0.22 and we infer that this temperature will decrease to zero as packing 
fraction approaches the densest possible 2D packing [n/(2 x / ~ ) ~  0.906]. 

2.2. Diffusion Measurements 

An accurate analysis of the diffusion process on the air table is only 
possible if we analyze the diffusion paths for a large number of particles. To 
perform these measurements, we have developed an automatic, real-time 
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image-processing system. The accurate location of one marked particle is 
very important. For this reason, we have used a camera with a digitizer 
board having a resolution of 752 x 468 pixels and a video frame which 
covers the complete air table (50 x 50 cm2). The marked particle has a 
diameter of 8 mm and corresponds to about 8 pixels, which is large enough 
to calculate and record the position of the center of this particle. 

Storing a full 2D image on a computer is not only unnecessary, but it 
consumes such a large amount of hard disk space that it would be 
impossible to store a continuous movie of the displacement of the marked 
particle for the desired times. We have solved this problem by creating an 
image-analysis loop so that the only outputs are the coordinates of the 
marked particle center. This loop is composed of the following simple 
image-processing functions: 

1. Grabbing the image. 

2. Making a threshold of the gray-level image to create a binary 
image. 

3. Locating the particle and calculating the coordinates of its center. 

4. Storing this result on a file and going back to the beginning of this 
loop. The minimal duration of this loop in about 2 sec. 

For this experiment, the particles have to stay in a confined area. In 
order to study the diffusion process of these particles we have to define 
some simple rules to improve the quality of our results. 

1. The trajectory of only one marked particle is recorded at a given 
time. 

2. The marked particle was placed near the center of the air table 
and the air flow was activated before the beginning of the run. 

3. Only the initial part of the trajectory of the particle is recorded; if 
the particle touches the boundaries of the air table, this experiment 
ceases. 

For each packing fraction, we recorded 200 trajectories to obtain 
statistically accurate mean-square particle displacements versus time. 
Because of the large fluctuations of mean-square displacement values, only 
the common part of the 200 results is used for the fit calculation. The linear 
fit of the mean-square displacement versus the time yields the value of the 
self-diffusion coefficient D : 

< AR 2 > =4Dt  (3) 
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The measurements of the mean square displacement are performed 
only for packing fractions between 0.25 and 0.77. For lower packing frac- 
tions, the time for the marked particle to touch the wall is so short that the 
numbers of consecutive coordinates are too few to estimate an accurate 
self-diffusion coefficient. Table III gives a full set of our results. A plot of 
the variation of the self-diffusion coefficient versus the packing fraction 
(Fig. 4) shows two regions of the curve. At packing fractions from 0 to 
about 0.7, the self-diffusion coefficient decreases linearly with the packing 
fraction when results are plotted using a log scale. But a high packing frac- 
tions near 0.74, the slope of the self-diffusion coefficient changes drastically. 
This change corresponds to the transition between a real 2D disordered 
packing of disks and the appearance of local ordering among the par- 
ticles 12) as predicted by Bideau et aL ~5~ The difference between our result 
(0.74) and the result (0.82) given by Hinch and Lemaitre t2~ is due solely to 
the way of calculating the packing fraction. Hinch and Lemaitre t2~ define 
an effective diameter larger than the geometrical one (by 8%) to allow for 
short-range repulsive potential between the disks. When this correction was 
made, our results agree with these of Hinch and Lemaitre. t2J 

We require a global theory to correlate measurements of granular tem- 
perature at low packing fractions and the self-diffusion coefficients at high 
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Fig. 4. Self-diffusion coefficient versus the packing fraction. Experimental results of D are for 
packing fractions between 0.25 and 0.77. The curve is an extrapolation of the granular tem- 
perature using the kinetic theory. 
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T a b l e l l l .  Self-Diffusion Coefficient for 2D 
Random Particle Motion Versus the Packing 

Fraction 

Packing fraction v Self-diffusion coefficient D 

0.26 1.04 x 10 ~ 
0.34 4.3 x 10 -t  
0.44 7.1 x 10 -1 
0.52 2.6 x 10 -~ 
0.60 1.2 x 10 - J 

0.65 8.5 x 10 -2 
0.73 3.5 x 10 -2 
0.76 5.0 x 10 -3 
0.78 1.3 x 10 -3 

packing fractions. In  the next section, we describe a kinet ic- theory diffusion 
coefficient that  can be appl ied  to the 2D air table experiment.  

3.  K I N E T I C  T H E O R Y  

Kinet ic  theories of granular  flows have been developed following the 
approaches  used in the kinetic theories of  dense fluids and liquids. They 
incorpora te  energy diss ipat ion owing to inelasticity and surface roughness. 
Both the granular  tempera ture  and the normal ized velocity au tocorre la t ion  
function a,,(t) can be determined by means of  such kinetic theory 
approaches .  Analyses of Tg and a~,(t) for granular  flows of disklike particles 
are now described. 

Fol lowing  the work  of  Einstein t6) on Brownian mot ion  and applying 
it to the 2D r andom mot ion  of a particle,  one finds that  the self-diffusion 
coefficient D is given by Eq. (3). Fur ther ,  the mean square of  the part icle 
displacement  due to r a n d o m  walk can be expressed as 

~0 ~176 (AR'-) = 2 t  ( C ( 0 ) -  C ( r ) )  dr  (4) 

where C is the peculiar  velocity and ( C ( O ) . C ( r ) )  is the velocity 
au tocorre la t ion  function. Note  that  C is the difference between the instan- 
taneous part icle velocity and the local mean velocity, C = e -  u. Hence, the 
self-diffusion coefficient may  be expressed as 

D = � 8 9  ( C ( 0 ) .  C ( r ) )  dr  (5) 
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The integral of Eq. (5) is evaluated by kinetic theory methods. 
Considering that one-half of the initial value of velocity autocorrelation 
function is the granular temperature of the system, we may write 

f? D = Tg a~,(t) dt (6) 

where aL,(t) is the normalized velocity autocorrelation function, 

�9 , (C(O).C(t)) (7) 
aL, Ctl = ~ c ( o ) )  

Following the usual practice, we assume the velocity autocorrelation 
function to be an exponential decaying function of time, 

a,,(t) = e x p ( - f i t )  (8) 

where fl is a constant that can be determined from (7) and (8) as 

da,,(t) = -  lim ( C . A C )  
f l= dt ,=o J , -o  2 T A t  (9) 

and where AC = C(t + At) -- C(t). 
By applying the kinetic theory of granular flows to analyze the colli- 

sional processes of identical, smooth, inelastic disks, one finally finds that 

= (10) 
o 

where go is the radial distribution function at contact (deduced from ref. 7) 

1 6 - 7 v  
go(v) = 16( 1 - v) 2 (11 ) 

and a is the particle diameter, v the solid fraction, and Tg the granular tem- 
perature. 

Substituting Eqs. (I0) and (8) into Eq. (6), we obtain the final expres- 
sion for the self-diffusion coefficient, 

D tr(rcTg)l/2 (12) 
8vgo(v) 

Thus, knowing the granular temperature at a given solid fraction 
and using Eq. (12), we can determine the self-diffusion coefficient D. 
Figure 4 gives D calculated from Eq. (12), where Tg is measured in air-table 
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experiments. In Section 2 we assumed that the granular temperature curve 
for low packing fractions could be extrapolated to the high packing fractions. 
The curve of the self-diffusion coefficient in Fig. 4 shows this extrapolation to 
v=0.80. This curve gives also a good fit to the results of the direct 
measurements of the self-diffusion coefficient. This comparison will be given in 
Section 5 after we describe the numerical simulations of these experiments. 

4. C O M P U T E R  S I M U L A T I O N S  

The computer simulations are performed using a molecular dynamics 
model. The particle-interaction model used in our simulation is the so- 
called hard-particle model which assumes instantaneous collisions. In the 
air table when the fluctuating particles have reached an equilibrium state, 
there is a balance between the collisional energy dissipation in the particles 
and the energy input to the particles from the fluidizing air. To model their 
behavior in a simple way, we have merely taken the particles to be perfectly 
elastic and given the mass of particles initial velocities appropriate to a 
chosen granular temperature. ~7-9~ 

In the simulations, the particles are initially placed in a square com- 
putational box and are given random velocity fluctuations about a mean 
shear flow velocity. Initially, the particles are placed in a regular array 
according to the number of particles and the packing fraction needed. 
At the first step, all lengths are nondimensionalized by H, the dimension 
of the computational box, and velocities are nondimensionalized by U, a 
characteristic velocity associated with the shear flow at the boundaries. To 
eliminate the difficulties associated with obtaining the desired granular tem- 
perature, we first perform a random choice of the initial local velocities, 
then we calculate the corresponding granular temperature as previously 
defined. After this calculation, we normalize our granular temperature to 
the unit by dividing the previous velocity values by the calculated square 
of the temperature. During our numerical simulations, as we have no loss 
of energy, we did not need to check the fluctuations of this granular tem- 
perature; at the end of the run we calculate the energy and it remains 
constant and equal to the unit according to the numerical error. 

According to the positions and the velocities of each of the disklike 
particles, we carculate the shortest time At before the next collision between 
particles, increase the time by this amount, implement the collision, again 
calculate the next shortest time step, and so on. Simple periodic boundary 
conditions were applied on all the walls of the computational box to effec- 
tively increase the size of the computational region. When a particle crosses 
a boundary, it is introduced at the corresponding position in the wall of the 
opposite side of the 2D box. 
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kinds of studies: (a) experimental studies with packing fractions between 0.25 and 0.77; 
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As the initial parameters are the X, Y coordinates and the Ux, Uy 
velocities in a regular lattice, we need to perform a large number  of  
collisions before we can be sure that we have a homogeneous,  random, dis- 
ordered, moving-disk arrangement. We performed 50,000 collisions before 
determining the granular temperature and the self-diffusion coefficient. 

In order to calculate the self-diffusion coefficient, we must integrate the 
autocorrelation function with respect to time. This operation has been done 
by calculating the autocorrelation function after each 100 collisions and by 
accumulating the results. The simulations were performed for up to 
1,000,000 collisions to obtain accurate values of  the autocorrelat ion 
function. 

Table IV. Normalized Self-Diffusion 
D/(av / -~g ) for 2D Random Coefficient 

Particle Motion Versus the Packing 
Fraction 

v D/(,~ .,,:~.) 

0.11 3.730 
0.20 1.010 
0.30 0.530 
0.40 0.343 
0.60 0.097 
0.70 0.029 
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In our simulations, we have kept the size of the box and the granular 
temperature (one-half of the mean square of particle velocity fluctuation) 
constant, and increased the number of particles inside the box to have a 
packing fraction varying from 0.11 to 0.70. The simulations were performed 
for times sufficient to have an autocorrelation function close to zero. Owing 
to the dimensionless input parameters (the velocity is initially divided by 
the square root of temperature, the size of the box is normalized by disk 
diameter), the results have been obtained as a dimensionless value of the 
self-diffusion coefficient D/(a x//-~g). The numerical results are presented in 
Table IV and Fig. 5. In this figure, the decrease of the self-diffusion coef- 
ficient with the packing fraction is similar to that of previously mentioned 
experiments. We shall discuss this comparison in more detail in the next 
section. 

5. C O M P A R I S O N  AND DISCUSSION OF RESULTS 

The principal conclusion of our three kinds of studies is the good 
correlation between the experimental and theoretical results. Although the 
detailed mechanics in the physical experiments differs from that in the 
numerical simulation, the correspondence of the normalized self-diffusion 
coefficients suggests surprising and interesting similarities. In the air-table 
experiments, the disklike particles moved inside a box with hard bound- 
aries which confines the particles inside it, but in the numerical simulations 
we apply periodic boundary conditions to the particle motions. The real 
particles move on the air table as a result of energy coming from the air 
flow. In the molecular dynamics simulations, we started with an initial 
energy for the set of particles. Since the restitution coefficient in the simula- 
tion is equal to 1, the total 'mean' energy remains constant during the run. 
In the experiments we can infer that the energy input from the air flow 
under the particles is equal to the loss of energy due to the collisions 
between particles. Thus we average over long times to determine the mean 
square velocity fluctuations. The process is stationary and we can deter- 
mine the growth of the mean square displacement with time to calculate 
the diffusion coefficients. 

By using a dimensionless value for the self-diffusion coefficient 
D/(a~/-~g), Eq." (12) becomes a simple function of the packing fraction 
according to the radial distribution function at contact go(v). The good 
agreement between the kinetic theory, the experiments, and the numerical 
simulations gives us important information about the mean phenomena 
which govern the displacement of the particles on the air table. These 
displacements were found to occur randomly over the whole air table, indi- 
cating homogeneity in the air flow and horizontal alignment of the table. 

822/82/3-4-29 
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The mean free path between particles and the self-diffusion coefficient are 
related to one another such that the self-diffusion coefficient decreases with 
the packing fraction. We also conclude that (at a given air flow velocity) 
the granular temperature decreases continuously with increase in packing 
fraction until ordering of the disks occurs (v ~ 0.77). t4' 5~ Even if it was not 
possible to measure this granular temperature for the high value of the 
packing fraction, the experimental and numerical variations (Fig. 5) of the 
dimensionless self-diffusion coefficient with packing fraction permit us to 
conclude that the extrapolation of this temperature works well. This extra- 
polation is, however, limited by the appearance of particle ordering, t4"sl 
Above a packing fraction about 0.74, the correlation between experimental 
and numerical results and kinetic-theory predictions is poor. 

It would be desirable to have, for the same packing fraction, the 
granular temperature and the self-diffusion coefficient to avoid misleading 
interpretations about the mean phenomena which occur in our air-table 
experiments. For that, we need a very fast video camera system (up to 1000 
images per second) to record all the local displacements and hence to 
calculate all the local velocity fluctuations between consecutive collisions 
which appear very often at high packing fractions. 

6. C O N C L U S I O N  

The comparison between experiments, numerical simulations, and 
kinetic theory is very close for the studies of 2D disklike particles moving 
randomly inside a square box. There is a good agreement between the self- 
diffusion coefficient derived from the air-table experiment and the one 
determined from a molecular dynamics model with hard-disk interactions. 
The decrease of the self-diffusion coefficient can be easily interpreted as 
the decrease of the granular temperature with increase in concentration 
according to the kinetic theory. The conservation of energy in the latter 
case is analogous to the balance between the loss of energy due to dis- 
sipative interparticle collisions and gain in the particle kinetic energy due 
to air flow fluctuations occurring in the air table. 
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